Uncategorized

Big data, big popular

Entenda como é a disseminação da análise de dados dentro de uma organização, capaz de atingir até a linha de frente
O artigo original é de David Court, diretor da McKinsey de Dallas, Texas, nos EUA, e foi ilustrado por Regência Consultoria.

Compartilhar:

O mundo se animou com a novidade representada pela capacidade de analisar os megadados, não apenas porque o volume deles é monstruoso, mas também porque seu impacto pode ser muito alto. 

Especialistas do McKinsey Global Institute estimaram, anos atrás, que os varejistas que explorassem o big data analytics em escala em suas organizações inteiras conseguiriam aumentar suas margens operacionais em mais de 60% e que poderia haver redução de custos e ganhos em qualidade, particularmente no setor de cuidados com a saúde norte-americano. Até agora muito poucos atingiram o que chamaríamos “alto impacto com big data”.  

Há exemplos de empresas bem-sucedidas, como Amazon e Google, nas quais o analytics está no coração  dos negócios, mas, para a maioria, esse campo tem sucesso limitado a poucos testes ou a pequenos  pedaços da organização.

**POR QUE OS ESFORÇOS NAUFRAGAM?**

Até dois ou três anos atrás, os principais desafios dos líderes da análise lógica de dados eram fazer com que as equipes da alta gestão compreendessem seu potencial, encontrar pessoas para a construção de modelos e criar o modo de “costurar” bancos de dados às vezes díspares. Mas, conforme se ganhou escala, novos desafios surgiram:

**1 – A relutância de gestores seniores em aumentar o investimento para promover a escala,** como treinamento, ferramentas e centros de excelência, já que esforços anteriores não trouxeram retorno significativo. Por exemplo, o executivo de uma montadora recentemente investiu em uma pesquisa para compreender como as mídias sociais poderiam ser usadas para aperfeiçoar as previsões e o planejamento de produção, mas só obteve detalhes sobre preferências dos consumidores.

**2 – A desconfiança dos gestores da linha de frente.** Eles se queixam de que as ferramentas são como caixas-pretas  –simplesmente não compreendem as análises e suas recomendações. Em um call center de vendas, os funcionários não conseguiam usar o sistema de recomendação de produtos porque não sabiam como a ferramenta criava as recomendações e porque ela não era de fácil uso. Feitas as melhorias, a taxa de adoção aumentou drasticamente. 

**3 – Os processos não acompanharam os avanços das análises matemáticas.** Por exemplo, é ótimo ter dados em tempo real e precificação automatizada, mas, se os processos de gestão são criados para definir preços semanalmente, não se aproveitam as novas tecnologias de modo pleno. 

> **ESTAS AÇÕES TÊM DE ESTAR UNIDAS!**
>
> > **ADOÇÃO DE NOVAS TECNOLOGIAS**
> >
> > **Soluções direcionadas a alvos específicos, provenientes de fornecedores de softwares e serviços.** Uma classe emergente de cientistas de dados constrói modelos voltados a usos específicos, facilmente implementados em áreas como logística, gestão de riscos, precificação e gestão de pessoas. Como um todo, ajudarão a aumentar a confiança dos gestores para que invistam  na escala. 
> >
> > **Poucas áreas estão passando por mais inovações e investimentos do que a do big data analytics.** Três das novas ferramentas e abordagens ao desafio de atingir escala são promessas mais interessantes:
> >
> > **Novas ferramentas do tipo “self-service”.** Elas estão fomentando a confiança de usuários da empresa nas análises. É a “democratização”: as análises saem das mãos dos estatísticos e chegam à linha de frente, que não precisa saber desenvolver códigos, mas pode estabelecer conexões entre dados de fontes variadas e aplicar modelos preditivos. Ferramentas de visualização, enquanto isso, estão facilitando  o trabalho com os dados. 
> >
> > A American Express, a P&G e o Walmart fizeram grandes investimentos nessa linha. Uma empresa de hardware implantou um conjunto de análises para melhorar as decisões de sua força de vendas. Assim, conseguiu identificar melhores oportunidades de vendas e renovação e gerar mais de US$ 100 milhões em novas receitas com assistência técnica e serviços.
> >
> >
> > **Novidades tecnológicas** permitem a captura mais ampla de dados em tempo real (como por meio de sensores) enquanto facilitam o processamento de dados e a análise em grande escala. Esses avanços abrem novos caminhos para a automação e aprendizado de máquinas
> >
> > Uma seguradora fez  grandes progressos usando análises para prever a gravidade dos sinistros, reduzindo a necessidade  de intervenção humana.
>
>
>
> > **ADAPTANDO A  ORGANIZAÇÃO**
> >
> > **Os desafios aqui elencados** exigem mais do que implementação de novas ferramentas. Demandam foco, redefinição de funções e mudanças culturais.
> >
> > **Foco na gestão de mudanças** A democratização e o poder de novas ferramentas de big data analytics podem ajudar a linha de frente a superar dúvidas e a falta de intimidade com a análise matemática. No entanto, para isso dar certo, a empresa tem de estimular a confiança entre os colaboradores e mudar seu modo de tomar decisões. Esse é o cerne do desafio para a gestão da mudança –e leva tempo. Para alcançar escala, paradoxalmente, é preciso focar. Não tente mudar todas as decisões da organização e todas as abordagens operacionais ao mesmo tempo para incorporar o big data. Vale a pena estimular a mudança de comportamento em áreas específicas,  como precificação, alocação de estoque ou gestão  de crédito. Os líderes devem perguntar-se quais funções ou departamentos podem beneficiar-se mais das análises e focar a implementação de ferramentas ali.
> >
> > Uma telecom quis aperfeiçoar, com o big data analytics, a gestão dos clientes perdidos. Em parceria com uma companhia especializada em armazenamento de dados  e análises, passou a identificar, quase em tempo real,  clientes que deixariam a empresa. Começou uma  mudança no atendimento ao cliente: mais ferramentas adotadas, fluxos de trabalho redesenhados, aplicativos instalados. E o pessoal de atendimento recebeu treinamento em todas essas ferramentas.
> >
> >
> > **Foco no redesenho de funções** Em uma empresa que usa o analytics, automatiza-se parte do trabalho dos funcionários, e isso implica realizar uma mudança permanente em seus papéis. Por exemplo, se a precificação é automatizada, o gestor “substituído” pela máquina não pode continuar responsável pelos lucros e perdas do negócio –afinal, uma parcela fundamental da fórmula do lucro agora é feita pela máquina. Também se exige foco aqui, pois o redesenho de funções consome tempo. Só se deve mudar para a próxima área quando as novas ferramentas e os novos papéis tiverem sido desenvolvidos e testados na área atual.
> >
> > Na seguradora antes mencionada, os gestores de sinistros só processam as ocorrências extraordinárias, com nível mais alto de complexidade ou danos mais sérios ao patrimônio.
> >
> > **Como incorporar o analytics na cultura** As culturas orientadas a dados são criadas por meio da disponibilização de ferramentas que sejam fáceis de adotar e por outros elementos para engajar funcionários-chave no analytics. Iniciativas criativas possibilitam às empresas estabelecer uma mudança cultural por meio de ações realistas. Foi o que aconteceu em uma organização cliente da McKinsey. Ela começou a mudar sua cultura com centros de excelência de analytics e uma pequena equipe de cientistas de dados. Hoje, continua a mudá-la, fazendo rodízio de líderes do negócio para eles aprenderem o básico sobre as novas ferramentas e levarem esse conhecimento às respectivas áreas, conseguindo aplicá-lo  aos problemas e às oportunidades reais da empresa. Um dia, as organizações terão dezenas ou centenas de  gestores em centros de analytics, que aceleram a adoção das ferramentas para que se tornem mais fáceis de usar. 
> >
> > Uma grande empresa de serviços financeiros começou desenvolvendo competições que recompensavam equipes geradoras de conhecimento por meio da análise de dados. Depois, estabeleceu centros de treinamento para o uso das ferramentas e criou uma comunidade de usuários capacitados a apoiar outros usuários em suas análises e validar os achados. Por fim, criou um programa de comunicação para compartilhar a empolgação com tudo isso.

Compartilhar:

Artigos relacionados

Há um fio entre Ada Lovelace e o CESAR

Fora do tempo e do espaço, talvez fosse improvável imaginar qualquer linha que me ligasse a Ada Lovelace. Mais improvável ainda seria incluir, nesse mesmo

Carreira, Diversidade
Ninguém fala disso, mas muitos profissionais mais velhos estão discriminando a si mesmos com a tecnofobia. Eles precisam compreender que a revolução digital não é exclusividade dos jovens

Ricardo Pessoa

4 min de leitura
ESG
Entenda viagens de incentivo só funcionam quando deixam de ser prêmios e viram experiências únicas

Gian Farinelli

6 min de leitura
Liderança
Transições de liderança tem muito mais relação com a cultura e cultura organizacional do que apenas a referência da pessoa naquela função. Como estão estas questões na sua empresa?

Roberto Nascimento

6 min de leitura
Inovação
Estamos entrando na era da Inteligência Viva: sistemas que aprendem, evoluem e tomam decisões como um organismo autônomo. Eles já estão reescrevendo as regras da logística, da medicina e até da criatividade. A pergunta que nenhuma empresa pode ignorar: como liderar equipes quando metade delas não é feita de pessoas?

Átila Persici

6 min de leitura
Gestão de Pessoas
Mais da metade dos jovens trabalhadores já não acredita no valor de um diploma universitário — e esse é só o começo da revolução que está transformando o mercado de trabalho. Com uma relação pragmática com o emprego, a Geração Z encara o trabalho como negócio, não como projeto de vida, desafiando estruturas hierárquicas e modelos de carreira tradicionais. A pergunta que fica: as empresas estão prontas para se adaptar, ou insistirão em um sistema que não conversa mais com a principal força de trabalho do futuro?

Rubens Pimentel

4 min de leitura
Tecnologias exponenciais
US$ 4,4 trilhões anuais. Esse é o prêmio para empresas que souberem integrar agentes de IA autônomos até 2030 (McKinsey). Mas o verdadeiro desafio não é a tecnologia – é reconstruir processos, culturas e lideranças para uma era onde máquinas tomam decisões.

Vitor Maciel

6 min de leitura
ESG
Um ano depois e a chuva escancara desigualdades e nossa relação com o futuro

Anna Luísa Beserra

6 min de leitura
Empreendedorismo
Liderar na era digital: como a ousadia, a IA e a visão além do status quo estão redefinindo o sucesso empresarial

Bruno Padredi

5 min de leitura
Liderança
Conheça os 4 pilares de uma gestão eficaz propostos pelo Vice-Presidente da BossaBox

João Zanocelo

6 min de leitura
Inovação
Eventos não morreram, mas 78% dos participantes já rejeitam formatos ultrapassados. O OASIS Connection chega como antídoto: um laboratório vivo onde IA, wellness e conexões reais recriam o futuro dos negócios

Vanessa Chiarelli Schabbel

5 min de leitura