Uncategorized

Bandeira vermelha para seu programa de analytics

Confira os dez sinais de que suas ações de análise de dados correm o risco de fracassar e reaja | ESTUDO MCKINSEY

Compartilhar:

As empresas de maior porte vêm fazendo investimentos vultosos em programas de análise de dados. No entanto, estudos da consultoria McKinsey mostram que a frustração com o valor gerado por essas iniciativas tem sido igualmente vultosa. A McKinsey identificou dez sinais de alerta de que um programa de análise de dados corre o risco de fracassar e avisa: reagir rápido a esses alertas aumenta significativamente a possibilidade de sucesso no prazo de dois a três anos: 

**1- A direção da empresa não conhece os programas avançados de análise de dados.** 

Muitos gestores não possuem uma compreensão sólida sobre as diferenças entre a análise de dados tradicional – ou seja, inteligência de negócios e geração de relatórios – e iniciativas avançadas, com ferramentas poderosas de previsão de tendências, com base em machine learning. 

**Resposta imediata >>** Realizar uma série de workshops com os líderes sobre os princípios fundamentais da análise de dados avançada, esclarecendo visões equivocadas.

**2- Não se determinou o valor que a iniciativa deveria gerar no primeiro ano.** 

Frequentemente, o entusiasmo leva à implementação apressada das ferramentas de analytics, na expectativa de que possam beneficiar todas as atividades da empresa. Isso leva a desperdícios, retornos lentos e desconfiança de que a iniciativa possa gerar valor. 

**Resposta imediata >>** Logo de início, é preciso definir de três a cinco áreas em que o processamento de dados avançado poderá gerar o maior valor possível e mais rapidamente – no primeiro ano. 

**3- Não há uma estratégia que vá além de algumas áreas e funcionalidades.** 

É comum ver executivos animados com o analytics avançado e com o potencial de retorno em determinadas áreas e funcionalidades da empresa, mas sem uma estratégia de geração de valor que vá além dessas áreas específicas. 

**Resposta imediata >>** Há três perguntas que devem ser respondidas: • Que ameaças as novas tecnologias, como a inteligência artificial, representam para a empresa? • Que oportunidades essas tecnologias trazem para os negócios? • Como a empresa pode utilizar dados e análises para criar novas oportunidades? 

**4- O papel dos analistas de dados, no presente e no futuro, está mal definido.**

Poucos executivos conseguem descrever em detalhe com que talentos a empresa conta no campo da análise de dados e muito menos onde esses talentos se encontram, como estão organizados e se possuem competências e cargos adequados. 

**Resposta imediata >>** A melhor forma de abordar a questão dos talentos nessa área é pensar em uma tapeçaria com conjuntos de capacidade e papéis. Cada parte dessa tapeçaria deve ter sua própria definição, desde uma descrição de cargo detalhada até as interações organizacionais correspondentes. 

**5- Faltam “analistas tradutores”.** 

São profissionais que podem ajudar as lideranças a identificar situações de alto impacto para uso da análise de dados e, então, traduzir as necessidades do negócio para os especialistas, a fim de que estes encontrem as melhores soluções. 

**Resposta imediata >>** Contratar ou treinar profissionais para esse papel. O candidato ideal, internamente, deve conhecer muito bem a empresa e possuir formação que possibilite o diálogo com os especialistas em análise de dados. 

**6- A análise de dados está isolada dos negócios.** 

Empresas que ainda lidam para criar valor por meio da análise de dados tendem a isolar essa atividade, ou por meio da centralização excessiva ou em silos distantes e mal coordenados.

**Resposta imediata >>** O melhor modelo organizacional é híbrido: mantendo algumas funções e decisões centralizadas e fazendo com que as equipes de análise de dados estejam envolvidas com o negócio e sejam responsáveis por entregar ações de impacto. 

**7- A “limpeza dos dados” já começou e vai custar caro.** 

Há uma tendência entre as empresas de achar que todos os dados disponíveis na organização devem estar totalmente “limpos”, ou seja, atualizados e validados, por exemplo, antes que o trabalho de análise possa começar de forma séria. Não é bem assim. 

**Resposta imediata >>** A ideia é priorizar a limpeza dos dados que abastecem as áreas e funcionalidades mais valiosas, com base na linha de negócios da empresa. 

**8- Novas plataformas não foram construídas segundo um propósito.** 

Um erro comum é construir novas plataformas de dados antes de descobrir a melhor forma de introduzir os dados e estruturar o sistema. É fundamental entender, por exemplo, que deve ser segmentado para atender diferentes tipos de situação. Em mais da metade dos casos, as plataformas não se encaixam em um propósito. 

**Resposta imediata >>** Na prática, uma nova plataforma de dados pode coexistir com sistemas legados de TI. Novos dados, de múltiplas fontes, podem ser incorporados à nova plataforma, e realizadas as análises desejadas, enquanto os sistemas legados continuam a atender as necessidades transacionais. 

**9- Ninguém sabe qual será o impacto da análise avançada nos resultados.** 

É surpreendente quantas empresas estão gastando milhões de dólares em análise de dados avançada, e outros investimentos digitais, mas não são capazes de estimar o impacto desses gastos nos resultados. 

**Resposta imediata >>** Os líderes, juntamente com os “tradutores”, devem ser os primeiros a responder esta questão. Devem identificar funcionalidades e áreas com potencial para gerar valor com a análise de dados. E se comprometer a mensurar o impacto financeiro. 

**10- Não há ninguém focado em identificar potenciais implicações éticas, sociais e regulatórias das iniciativas de análise de dados.** 

É importante ser capaz de antecipar como as áreas utilizarão as informações digitalizadas e compreender se há riscos do ponto de vista ético e dos requisitos regulatórios. 

**Resposta imediata >>** Como parte de um programa mais amplo de gestão de riscos, é preciso fazer um trabalho em parceria com as áreas jurídicas e de compliance, com a participação dos “tradutores”.

Compartilhar:

Artigos relacionados

Quando a IA desafia o ESG: o dilema das lideranças na era algorítmica

A inteligência artificial está reconfigurando decisões empresariais e estruturas de poder. Sem governança estratégica, essa tecnologia pode colidir com os compromissos ambientais, sociais e éticos das organizações. Liderar com consciência é a nova fronteira da sustentabilidade corporativa.

Empreendedorismo
Falta de governança, nepotismo e desvios: como as empresas familiares repetem os erros da vilã de 'Vale Tudo'

Sergio Simões

7 min de leitura
Tecnologias exponenciais
Já notou que estamos tendo estas sensações, mesmo no aumento da produção?

Leandro Mattos

7 min de leitura
Empreendedorismo
Fragilidades de gestão às vezes ficam silenciosas durante crescimentos, mas acabam impedindo um potencial escondido.

Bruno Padredi

5 min de leitura
Empreendedorismo
51,5% da população, só 18% dos negócios. Como as mulheres periféricas estão virando esse jogo?

Ana Fontes

5 min de leitura
Tecnologias exponenciais
A inteligência artificial está reconfigurando decisões empresariais e estruturas de poder. Sem governança estratégica, essa tecnologia pode colidir com os compromissos ambientais, sociais e éticos das organizações. Liderar com consciência é a nova fronteira da sustentabilidade corporativa.

Marcelo Murilo

7 min de leitura
ESG
Projeto de mentoria de inclusão tem colaborado com o desenvolvimento da carreira de pessoas com deficiência na Eurofarma

Carolina Ignarra

6 min de leitura
Saúde mental, Gestão de pessoas
Como as empresas podem usar inteligência artificial e dados para se enquadrar na NR-1, aproveitando o adiamento das punições para 2026
0 min de leitura
ESG
Construímos um universo de possibilidades. Mas a pergunta é: a vida humana está realmente melhor hoje do que 30 anos atrás? Enquanto brasileiros — e guardiões de um dos maiores biomas preservados do planeta — somos chamados a desafiar as retóricas de crescimento e consumo atuais. Se bem endereçados, tais desafios podem nos representar uma vantagem competitiva e um fôlego para o planeta

Filippe Moura

6 min de leitura
Carreira, Diversidade
Ninguém fala disso, mas muitos profissionais mais velhos estão discriminando a si mesmos com a tecnofobia. Eles precisam compreender que a revolução digital não é exclusividade dos jovens

Ricardo Pessoa

4 min de leitura
ESG
Entenda viagens de incentivo só funcionam quando deixam de ser prêmios e viram experiências únicas

Gian Farinelli

6 min de leitura