Uncategorized, Inteligência Artificial
5 min de leitura

Transformando dados em valor: como implementar IA em processos

Gestor da área de Dados e Analytics da GEP Costdrivers

Compartilhar:

Quando a intenção não vira realidade

Menos de 30% das empresas que planejam adotar Inteligência Artificial conseguem, de fato, escalar sua aplicação. Mesmo com 80% das organizações globais declarando intenção de integrar IA aos seus processos até 2026 — segundo a Gartner — a maioria permanece presa à promessa, sem chegar à prática.

Esse descompasso revela uma dor crescente entre lideranças: saber o que precisa ser feito, mas esbarrar na complexidade da execução. Em um cenário de inovação constante, a transição para uma cultura data-driven e a aplicação estratégica da IA são imperativos — mas exigem mais do que boas intenções ou demonstrações técnicas sofisticadas. É preciso alinhar objetivos de negócio a soluções concretas e escaláveis.

Dados ruins contam histórias erradas

Dados fragmentados em silos geram inconsistências que comprometem modelos preditivos. Mais de 30% das empresas entrevistadas no relatório da Gartner apontam o “gerenciamento de dados” como barreira crítica, e 77% dos profissionais relatam ter pouca confiança na qualidade dos dados.

A situação se agrava quando entram em cena dados não estruturados — como PDFs ou e-mails — que demandam técnicas avançadas de NLP e visão computacional, elevando o custo operacional. Soluções como Data Lakes com ETL automatizado ajudam a unificar fontes e garantir dados completos e confiáveis.

A infraestrutura que trava a inovação

A integração com sistemas legados é um desafio recorrente. Arquiteturas antigas, baseadas em processos batch, não se conectam naturalmente com plataformas de IA em tempo real. Isso exige APIs, microsserviços e governança voltada a transformações complexas.

Além disso, 20% das empresas citam escassez de recursos computacionais, operando ainda com estruturas locais. Adoção de cloud híbrida, transfer learning e clusters de GPU/TPU pode reduzir custos operacionais em até 40%, além de melhorar significativamente a escalabilidade dos processos.

Gente com medo, mercado sem preparo

Outro gargalo importante é a falta de profissionais qualificados. Mais de 60% das empresas relatam escassez de cientistas de dados e engenheiros de Machine Learning. Soma-se a isso a resistência interna: cerca de 25% da força de trabalho rejeita o uso de IA por medo de substituição.

Superar essa barreira demanda ações estratégicas: programas de upskilling com certificações, gestão de mudança ativa e workshops com exemplos práticos. Transparência e envolvimento são cruciais para tornar a IA aliada — e não ameaça.

O piloto que nunca decola

Projetos de IA falham quando se limitam a provas de conceito (PoCs) desconectadas da realidade operacional. Um exemplo marcante é o da Novartis: mesmo com dados robustos, a empresa enfrentou perdas relevantes por falta de conexão com o dia a dia do negócio.

Para evitar isso, é fundamental:

● Definir escopos claros e problemas tangíveis;

● Entregar MVPs ágeis, com impacto mensurável em poucas semanas;

● Envolver usuários finais desde o início do processo.

A IA também precisa de regras claras

Regulações como GDPR, LGPD e o EU AI Act exigem não só conformidade legal, mas também transparência, auditabilidade e responsabilidade.

Um framework robusto deve incluir:

● Explainable AI (XAI), com modelos auditáveis e compreensíveis;

● Dados sintéticos e criptografia, para proteção de informações sensíveis;

● Comitês multidisciplinares que avaliem riscos éticos e operacionais.

Viés, ética e confiança não são opcionais

A mitigação de vieses é obrigatória para que a IA seja implementada com responsabilidade. Isso começa com dados de treinamento diversos e passa por frameworks de validação contínua.

Ferramentas automatizadas ajudam a monitorar desvios. Políticas formais definem papéis e responsabilidades. A Apple, por exemplo, antecipou tendências com o App Tracking Transparency, reforçando a privacidade como valor de marca.

Se a liderança não lidera, a IA não vinga

A liderança tem papel central. CIOs e CFOs devem promover reuniões regulares baseadas em dados, com KPIs claros e decisões orientadas por ROI.

Projetos bem-sucedidos começam no topo — com direção estratégica clara, metas realistas e visão integrada entre tecnologia e negócio.

A tríade que transforma dados em futuro

Tecnologia escalável, cultura colaborativa e governança ética: essa é a base das empresas que não apenas acompanham as mudanças — mas as lideram.

E na sua organização, qual desses três pilares está mais sólido? E qual ainda precisa de atenção?

Comente, compartilhe, debata. A construção de um ecossistema data-driven começa com quem está disposto a agir — e você pode ser o ponto de virada.

Compartilhar:

Artigos relacionados

Há um fio entre Ada Lovelace e o CESAR

Fora do tempo e do espaço, talvez fosse improvável imaginar qualquer linha que me ligasse a Ada Lovelace. Mais improvável ainda seria incluir, nesse mesmo

Tecnologias exponenciais
A aplicação da inteligência artificial e um novo posicionamento da liderança tornam-se primordiais para uma gestão lean de portfólio

Renata Moreno

4 min de leitura
Finanças
Taxas de juros altas, inovação subfinanciada: o mapa para captar recursos em melhorias que já fazem parte do seu DNA operacional, mas nunca foram formalizadas como inovação.

Eline Casasola

5 min de leitura
Empreendedorismo
Contratar um Chief of Staff pode ser a solução que sua empresa precisa para ganhar agilidade e melhorar a governança

Carolina Santos Laboissiere

7 min de leitura
ESG
Quando 84% dos profissionais com deficiência relatam saúde mental afetada no trabalho, a nova NR-1 chega para transformar obrigação legal em oportunidade estratégica. Inclusão real nunca foi tão urgente

Carolina Ignarra

4 min de leitura
ESG
Brasil é o 2º no ranking mundial de burnout e 472 mil licenças em 2024 revelam a epidemia silenciosa que também atinge gestores.
5 min de leitura
Inovação
7 anos depois da reforma trabalhista, empresas ainda não entenderam: flexibilidade legal não basta quando a gestão continua presa ao relógio do século XIX. O resultado? Quiet quitting, burnout e talentos 45+ migrando para o modelo Talent as a Service

Juliana Ramalho

4 min de leitura
ESG
Brasil é o 4º país com mais crises de saúde mental no mundo e 500 mil afastamentos em 2023. As empresas que ignoram esse tsunami pagarão o preço em produtividade e talentos.

Nayara Teixeira

5 min de leitura
Tecnologias exponenciais
Empresas que integram IA preditiva e machine learning ao SAP reduzem custos operacionais em até 30% e antecipam crises em 80% dos casos.

Marcelo Korn

7 min de leitura
Empreendedorismo
Reinventar empresas, repensar sucesso. A megamorfose não é mais uma escolha e sim a única saída.

Alain S. Levi

4 min de leitura